How do you differentiate #y= ln sqrt( 6x^2+8)#?

1 Answer
May 1, 2018

#dy/dx=(3x)/(3x^2+4)#

Explanation:

#"differentiate using the "color(blue)"chain rule"#

#"given "y=f(g(x))" then"#

#dy/dx=f'(g(x))xxg'(x)larrcolor(blue)"chain rule"#

#rArrdy/dx=1/(sqrt(6x^2+8))xxd/dx(sqrt(6x^2+8))#

#d/dx(sqrt(6x^2+8))=d/dx((6x^2+8)^(1/2))#

#=1/2(6x^2+8)^(-1/2)xxd/dx(6x^2+8)#

#=(6x)/(sqrt(6x^2+8))#

#rArrdy/dx=1/(sqrt(6x^2+8))xx(6x)/(sqrt(6x^2+8))#

#color(white)(rArrdy/dx)=(6x)/(6x^2+8)=(3x)/(3x^2+4)#