How do you differentiate #y=(sinx)^lnx#?

1 Answer
Feb 21, 2017

# dy/dx = (sinx)^(lnx){(lnx)(cotx) + (ln(sinx))/x} #

Explanation:

Generally when dealing with a variable exponent it is easier to differentiate (and understand) by taking natural logarithms (to remove the exponent) and differentiating implicitly:

We have:

# y = (sinx)^(lnx) #

Take Natural logarithms:

# lny = ln{(sinx)^(lnx)} #
# \ \ \ \ \ \= (lnx)(ln(sinx)) \ \ \ # (rule of logs)

Differentiate wrt #x# (LHS implicitly; RHS product rule with chain rule):

# \ 1/ydy/dx = (lnx)(1/sinx*cosx) + (1/x)(ln(sinx)) #
# \ \ \ \ \ \ \ \ \ \ \= (lnx)(cotx) + (ln(sinx))/x #

# :. dy/dx = y{(lnx)(cotx) + (ln(sinx))/x} #
# \ \ \ \ \ \ \ \ \ \ = (sinx)^(lnx){(lnx)(cotx) + (ln(sinx))/x} #