How do you differentiate #y=sqrt ((x-1)/(x+1))#?

2 Answers
Aug 8, 2016

#d y=1/((x+1)^2*sqrt((x-1)/(x+1))) * d x#

Explanation:

#d y=((1*(x+1)-1*(x-1))/((x+1)^2))/(2sqrt((x-1)/(x+1)))* d x#

#d y=((x+1-x+1)/(x+1)^2)/(2sqrt((x-1)/(x+1)))*d x#

#d y=((2)/(x+1)^2)/(2 sqrt((x-1)/(x+1)))* d x#

#d y=(cancel(2))/(cancel(2)*(x+1)^2*sqrt((x-1)/(x+1)))#

#d y=1/((x+1)^2*sqrt((x-1)/(x+1))) * d x#

Aug 8, 2016

#y'= 1/(x+1)^(3/2) *1/ sqrt (x-1)#

Explanation:

Just another perspective...

#y = sqrt ((x-1)/(x+1))#

simplifying the RHS
#y^2 = (x-1)/(x+1) = (x+ 1 -2)/(x+1) = 1 - 2/(x+1) #

implicit diff on LHS, power rule on RHS
#2 y \ y' = 2/(x+1)^2#

# y' = 1/(x+1)^2 * sqrt ((x+1)/(x-1))#

#= 1/(x+1)^(3/2) *1/ sqrt (x-1)#