How do you differentiate #y=sqrt[(x^2-1)/(x^2+1)]#?
1 Answer
Mar 12, 2017
Explanation:
#y = sqrt((x^2-1)/(x^2+1))#
#color(white)(y) = sqrt((x^2+1-2)/(x^2+1))#
#color(white)(y) = sqrt(1-2/(x^2+1))#
#color(white)(y) = (1-2/(x^2+1))^(1/2)#
So using the power rule and chain rule twice we find:
#(dy)/(dx) = 1/2(1-2/(x^2+1))^(-1/2)*d/(dx)(1-2/(x^2+1))#
#color(white)((dy)/(dx)) = 1/2(1-2/(x^2+1))^(-1/2)*d/(dx)(1-2(x^2+1)^(-1))#
#color(white)((dy)/(dx)) = 1/2(1-2/(x^2+1))^(-1/2)*(0+2(x^2+1)^(-2)(2x))#
#color(white)((dy)/(dx)) = 1/2(1-2/(x^2+1))^(-1/2)*(4x)/(x^2+1)^2#
#color(white)((dy)/(dx)) = (2x)/((x^2+1)^2sqrt(1-2/(x^2+1)))#
#color(white)((dy)/(dx)) = (2x)/((x^2+1)^2sqrt((x^2-1)/(x^2+1)))#