How do you differentiate #y=x^(2/x)#?

2 Answers
Nov 17, 2016

#-4/x^3x^((2-x)/x)#

Explanation:

Apply Chain rule of differentiation, with #u=2/x#:
#y'=(x^u)'\times(2/x)'#
set differentiation #\rArr(ux^(u-1))\times-2(x)^(-2)#
apply u=(2/x): #\rArr(2/x)x^(2/x-1)\times-2x^(-2)#
fraction form of #-2x^-2#: #\rArr-(2/x)x^((2-x)/x)2/x^2#

  • the two fractions can multiply by each other.
  • so your answer is...

#-4/x^3x^((2-x)/x)#

Nov 17, 2016

#(dy)/(dx)=2(1-lnx)x^(2/x-2)#

Explanation:

As #y=x^(2/x)#

we have #lny=2/xlnx#

or #2lnx=xlny#

Now deriving both sides w.r.t. #x#

#2/x=lny+x/y*(dy)/(dx)#

or #(dy)/(dx)=(2/x-lny)*y/x#

= #(2/x-2/xlnx)*y/x#

= #2/x(1-lnx)x^(2/x)/x#

= #2(1-lnx)x^(2/x-2)#