we have #y=x(sin(lnx)-cos(lnx))# using the product rule to differentiate i.e., #(uv)'=u'v+uv'# on apllying we get #dy/dx=1(sin(lnx)-cos(lnx))+x(cos(lnx)/x+sin(lnx)/x)rArrdy/dx=sin(lnx)-cos(lnx)+x/x(sin(lnx)+cos(lnx)=sin(lnx)-cos(lnx)+sin(lnx)+cos(lnx)=2sin(lnx)#