To divide #-4+10i# by #3+4i#, one should multiply numerator and denominator by complex conjugate of denominator #3+4i# i.e. #3-4i#. Also remember that #i^2=-1#.
#(-4+10i)/(3+4i)#
= #((-4+10i)×(3-4i))/((3+4i)×(3-4i))#
= #(-4)×3+(-4)(-4i)+10i×3+10i×((-4i))/(3×3+3×(-4i)+4i×3+4i×(-4i))#
= #(-12+16i+30i-40i^2)/(9-12i+12i-16i^2)#
= #(-12+46i-40×(-1))/(9-16×(-1))#
= #(-12+46i+40)/(9+16)#
= #(28+46i)/25#
= #28/25+46/25 i#