How do you divide #(4 - x^2 + x^3) / (2 + x^2)#?

1 Answer
Jul 28, 2016

#=> x-1- (2x-6)/(x^2+2)#

Explanation:

Write as: #(x^3-x^2+0x+4)/(x^2+0x+2)#

I have added the place holder of #0x# to make the calculation formatting easier. It has no value.

'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

#" "x^3-x^2+0x+4#
#color(magenta)(x)(x^2+0x+2) ->ul(x^3+0x^2+2x) larr" Subtract"#
#" "0-x^2-2x+4#
#color(magenta)(-1)(x^2+0x+2)->" " ul(-x^2-0x-2 ) larr" Subtract"#
#" "color(magenta)(0-2x+6 larr" Remainder")#
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

#(x^3-x^2+0x+4)/(x^2+0x+2)" " =" " x-1+ (-2x+6)/(x^2+2)#

#=> x-1- (2x-6)/(x^2+2)#