How do you divide #(4x^4+6x^3+3x-1)/(2x^2+1)#?

1 Answer
Jun 12, 2017

#2x^2+3x-1#

Explanation:

#"one way is to use the divisor as a factor in the numerator"#

#"consider the numerator"#

#color(red)(2x^2)(2x^2+1)color(magenta)(-2x^2)+6x^3+3x-1#

#=color(red)(2x^2)(2x^2+1)color(red)(-1)(2x^2+1)color(magenta)(+1)+6x^3+3x-1#

#=color(red)(2x^2)(2x^2+1)color(red)(-1)(2x^2+1)color(red)(+3x)(2x^2+1)color(magenta)(-3x)+3x#

#rArr(4x^4+6x^3+3x-1)/(2x^2+1)#

#=(cancel((2x^2+1))(color(red)(2x^2+3x-1)))/cancel((2x^2+1))#

#=2x^2+3x-1larrcolor(blue)" quotient"#