How do you divide #(6x^3-12x+10) div (3x-3)#?
2 Answers
Explanation:
#"one way is to use the divisor as a factor in the numerator"#
#"consider the numerator"#
#color(red)(2x^2)(3x-3)color(magenta)(+6x^2)-12x+10#
#=color(red)(2x^2)(3x-3)color(red)(+2x)(3x-3)color(magenta)(+6x)-12x+10#
#=color(red)(2x^2)(3x-3)color(red)(+2x)(3x-3)color(red)(-2)(3x-3)color(magenta)(-6)+10#
#=color(red)(2x^2)(3x-3)color(red)(+2x)(3x-3)color(red)(-2)(3x-3)+4#
#rArr(6x^3-12x+10)/(3x-3)#
#=(cancel((3x-3))(color(red)(2x^2+2x-2)))/cancel((3x-3))+4/(3x-3)#
#=2x^2+2x-2+4/(3x-3)#
Explanation: