How do you divide #(8x ^ { 3} + 20x ^ { 2} + 20x + 17) \div ( 4x + 4)#?

1 Answer
Jun 7, 2017

#8x^3+20x^2+20x+17=(4x+4)color(magenta)((2x^2+3x+2))+color(blue)9#

Explanation:

#" "8x^3+20x^2+20x+17#
#color(magenta)(2x^2)(4x+4) ->" "ul(8x^3+8x^2) larr" Subtract"#
#" "0 +12x^2+20x+17#
#color(magenta)(+3x)(4x+4)->" "color(white)()ul(12x^2+12x ) larr" Subtract"#
#" "0+8x+17#
#color(magenta)(2)(4x+4)->" "color(white)(xxxxxx)ul(8x+8) larr" Subtract"#
#" "color(blue)(9) larr" Remainder"#

Hence, quotient is #2x^2+3x+2# and remainder is #9# and

#8x^3+20x^2+20x+17=(4x+4)color(magenta)((2x^2+3x+2))+color(blue)9#