How do you divide #\frac { 2x ^ { 2} - 12x - 14} { x ^ { 3} - 16x } \div \frac { 6x - 42} { 4x + 16}#?

1 Answer
Sep 5, 2017

This equals # (4(x + 1))/(3x(x - 4))#

Explanation:

We can start by transforming into a multiplication.

#=(2x^2 - 12x- 14)/(x^3 - 16x) * (4x+ 16)/(6x- 42)#

Now start the long process of factoring.

#= (2(x^2 - 6x - 7))/(x^3 - 16x) * (4x + 16)/(6x - 42)#

#= (2(x - 7)(x + 1))/(x(x^2 - 16)) * (4(x + 4))/(6(x - 7))#

#= (2(x - 7)(x + 1))/(x((x + 4)(x - 4))) * (4(x + 4))/(6(x - 7))#

#= (4(x + 1))/(3x(x - 4))#

Hopefully this helps!