How do you divide #(m^3n^2)/(m^-1n^3)#?

1 Answer
Jul 14, 2015

Answer:

#(m^3n^2)/(m^(-1)n^3) = m^4n^-1#

Explanation:

First, let's use the distributive rule to separate the monomials.

#(m^3n^2)/(m^(-1)n^3) = (m^3/m^-1)(n^2/n^3)#

Now we use the quotient rule: when dividing monomials that have the same base, we subtract the exponents.

So

#(m^3/m^-1)(n^2/n^3) = (m^(3-(-1)))(n^(2-3)) =m^(3+1)n^-1#

#(m^3n^2)/(m^(-1)n^3) = m^4n^-1#