How do you divide #(x^3+8x^2-3x+16)div(x^2+5)# using long division?

1 Answer
Jan 12, 2018

The quotient is #=(x+8)# and the remainder is #=-(8x+24)#

Explanation:

Perform the long division

#color(white)(aaaa)##x^3+8x^2-3x+16##color(white)(aaaa)##|##x^2+5#

#color(white)(aaaa)##x^3+0x^2+5x##color(white)(aaaaaaaa)##|##x+8#

#color(white)(aaaaa)##0+8x^2-8x+16#

#color(white)(aaaaaaa)##+8x^2+0x+40#

#color(white)(aaaaaaaaa)##+0-8x-24#

Therefore,

#(x^3+8x^2-3x+16)/(x^2+5)=(x+8)-(8x+24)/(x^2+5)#

The quotient is #=(x+8)# and the remainder is #=-(8x+24)#