How do you evaluate #1/2 (sin (pi/2) + sin (pi/6))#?

1 Answer
May 15, 2016

3/4

Explanation:

Call the product #P = (1/2)p#
Apply the trig identity:
#sin a + sin b = 2sin ((a + b)/2).cos ((a - b)/2)#.
We get:
#sin ((a + b)/2) --> sin ((pi/2+ pi/6)/2) = sin (pi/3)#
#cos (a - b)/2 --> cos (pi/2 - (pi)/6)/2 = cos (pi/6) #
#p = sin pi/2 + sin pi/6 = 2sin(pi/3).cos (pi/6)#
Trig table gives -->
#sin (pi/3) = sqrt3/2#, and #cos (pi/6) = sqrt3/2#
Therefor,
p = sin (pi/2) + sin (pi/6) = 2(sqrt3/2)(sqrt3)/2 = 3/2
Finally:
P = (1/2)p = (1/2)(3/2) = 3/4