How do you evaluate #2 sin (pi/6) - 3 tan (pi/6)#?
1 Answer
Apr 3, 2016
Explanation:
Using the
#color(blue)" exact value triangle " # For angles
# pi/3 , pi/6 , pi/2 # with sides of length 1 ,
#sqrt3" and hypotenuse " 2 # From this :
#sin(pi/6) = 1/2" and " tan(pi/6) = 1/sqrt3 # hence
#2sin(pi/6) = 2xx1/2 = 1 # and
#3tan(pi/6) = 3xx1/sqrt3 # rationalising the denominator
# 3xx1/sqrt3 = 3xxsqrt3/(sqrt3xxsqrt3) = (3sqrt3)/3 = sqrt3 #
#rArr2sin(pi/6) - 3tan(pi/6) = 1 - sqrt3 ≈ -0.732 #