# How do you evaluate -3+6(1-3)^2?

May 31, 2018

See a solution process below:

#### Explanation:

First, execute the Subtraction operation within the Parenthesis:

$- 3 + 6 {\left(\textcolor{red}{1} - \textcolor{red}{3}\right)}^{2} \implies - 3 + 6 {\left(- 2\right)}^{2}$

Next, execute the Exponent operation:

$- 3 + 6 {\left(- 2\right)}^{\textcolor{red}{2}} \implies - 3 + 6 \times 4$

Then, execute the Multiplication operation:

$- 3 + \textcolor{red}{6} \times \textcolor{red}{4} \implies - 3 + 24$

$\textcolor{red}{- 3} + \textcolor{red}{24} \implies 21$

Jun 6, 2018

$21$

#### Explanation:

Count the number of terms first and simplify each term to a single value. These are added or subtracted in the last line.

$\textcolor{b l u e}{- 3} \text{ + } \textcolor{g r e e n}{6 {\left(1 - 3\right)}^{2}}$

Within each term do brackets first.
Then powers and roots
Then multiply and divide,

$= \textcolor{b l u e}{- 3} \text{ + "color(green)(6(-2)^2)" } \leftarrow$ brackets

$= \textcolor{b l u e}{- 3} \text{ + "color(green)(6(4)" } \leftarrow$ powers

$= \textcolor{b l u e}{- 3} \text{ + "color(green)(24)" } \leftarrow$ muliplication

$= 21 \text{ } \leftarrow$ addition