How do you evaluate #8^3*12^2*1/3^4#?
1 Answer
May 2, 2016
Explanation:
#8^3*12^2*1/(3^4)#
#=((2^3)^3*(2^2*3)^2)/(3^4)#
#=(2^9*2^4*color(red)(cancel(color(black)(3^2))))/(3^2*color(red)(cancel(color(black)(3^2))))#
#=(2^13)/(3^2)#
#=8192/9#
#= 910 2/9#
#= 910.bar(2)#
Alternatively:
#8^3*12^2*1/(3^4)#
#=((8*8*8)*(12*12))/(3*3*3*3)#
#=(512*144)/81#
#=(512*16*color(red)(cancel(color(black)(9))))/(9*color(red)(cancel(color(black)(9))))#
#=8192/9#