How do you evaluate cos 75?

1 Answer
Nov 20, 2016

#cos(75^@)=((sqrt(3)-1)sqrt(2))/4 ~~0.258819#

Explanation:

General Formula:
#color(white)("XXX")cos(A+B)=cos(A) * cos(B) - sin(A) * sin(B)#

Note: #75^@ = 30^@ +45^@#

#30^@# and #45^@# are two of the standard angles with:
#color(white)("XXX")cos(30^@)=sqrt(3)/2color(white)("XXX")sin(30^@)=1/2#

#color(white)("XXX")cos(45^@)=sqrt(2)/2color(white)("XXX")sin(45^@)=sqrt(2)/2#

Therefore
#cos(75^@) =cos(30^@+45^@)#

#color(white)("XXX")=cos(30^@) * cos(45^@) -sin(30^@) * sin(45^@)#

#color(white)("XXX")=sqrt(3)/2 * sqrt(2)/2 - 1/2 * sqrt(2)/2#

#color(white)("XXX")=((sqrt(3)-1)sqrt(2))/4#

(using a calculator)
#color(white)("XXX")~~0.258819#