How do you evaluate #cot((11pi)/6)#? Trigonometry Right Triangles Trigonometric Functions of Any Angle 1 Answer Shell Sep 25, 2016 #cot(11pi)/6 = -sqrt3# Explanation: #cot((11pi)/6)# Recall the identity #cottheta=costheta/sintheta# Using the unit circle, #cos((11pi)/6)=sqrt3/2# and #sin((11pi)/6)=-1/2# #cot((11pi)/6)=frac{sqrt3/2}{-1/2}=sqrt3/2 * -2/1=-sqrt3# Answer link Related questions How do you find the trigonometric functions of any angle? What is the reference angle? How do you use the ordered pairs on a unit circle to evaluate a trigonometric function of any angle? What is the reference angle for #140^\circ#? How do you find the value of #cot 300^@#? What is the value of #sin -45^@#? How do you find the trigonometric functions of values that are greater than #360^@#? How do you use the reference angles to find #sin210cos330-tan 135#? How do you know if #sin 30 = sin 150#? How do you show that #(costheta)(sectheta) = 1# if #theta=pi/4#? See all questions in Trigonometric Functions of Any Angle Impact of this question 3914 views around the world You can reuse this answer Creative Commons License