How do you evaluate csc(-22pi/6) - cot(19pi/7) + sec(-17pi/5)?
1 Answer
Dec 2, 2015
Evaluate trig functions.
Explanation:
- csc x = 1/sin x. Find
#sin ((-22pi)/6)#
#sin ((-22pi)/6) = sin ((2pi)/6 - (24pi)/6) = sin (pi/3 - 4pi) = #
=#sin (pi/3) = sqrt3/2.# Therefor,
#csc ((-22pi)/6) = 2/sqrt3 = (2sqrt3)/3# - Use calculator to find
#cot ((19pi)/7)#
#cot ((19pi)/7) = cot ((5pi)/7 + (14pi)/7) = cot ((5pi)/7 + 2pi)# =
#cot = (5pi)/7 = cot ((5(180))/7) = cot (128^@57)#
cot 128.57 = - tan (128.57 + 180) = tan (-51.43)
Calculator --> tan (-51.43) = -1.25 #sec = 1/cos# . Find#cos ((-17pi)/5)#
#cos ((-17pi)/5) = cos ((3pi)/5 - (20pi)/5) = cos ((3pi)/5 - 4pi) =#
#= cos ((3pi)/5) = cos 108^@#
Calculator --> cos 108 = -0.31
#sec ((-17pi)/5) = 1/-0.31 = -3.24#