How do you evaluate csc(-22pi/6) - cot(19pi/7) + sec(-17pi/5)?

1 Answer
Dec 2, 2015

Evaluate trig functions.

Explanation:

  1. csc x = 1/sin x. Find #sin ((-22pi)/6)#
    #sin ((-22pi)/6) = sin ((2pi)/6 - (24pi)/6) = sin (pi/3 - 4pi) = #
    = #sin (pi/3) = sqrt3/2.# Therefor,
    #csc ((-22pi)/6) = 2/sqrt3 = (2sqrt3)/3#
  2. Use calculator to find #cot ((19pi)/7)#
    #cot ((19pi)/7) = cot ((5pi)/7 + (14pi)/7) = cot ((5pi)/7 + 2pi)#=
    #cot = (5pi)/7 = cot ((5(180))/7) = cot (128^@57)#
    cot 128.57 = - tan (128.57 + 180) = tan (-51.43)
    Calculator --> tan (-51.43) = -1.25
  3. #sec = 1/cos#. Find #cos ((-17pi)/5)#
    #cos ((-17pi)/5) = cos ((3pi)/5 - (20pi)/5) = cos ((3pi)/5 - 4pi) =#
    #= cos ((3pi)/5) = cos 108^@#
    Calculator --> cos 108 = -0.31
    #sec ((-17pi)/5) = 1/-0.31 = -3.24#