How do you evaluate #e^(-ln2) + lnsqrt(e^5) + 4e^(-2ln2)#?

1 Answer
Feb 21, 2017

#e^(-ln2)+lnsqrt(e^5)+4e^(-2ln2)=4#

Explanation:

As #e^a=b=>lnb=a#.

Now putting #a=lnb# in #e^a=b#, we get #e^(lnb)=b#

Hence, #e^(-ln2)=1/e^(ln2)=1/2#,

#lnsqrt(e^5)=ln(e^5)^(1/2)=lne^(5/2)=5/2# and

#4e^(-2ln2)=4e^(-ln2^2)=4e^(-ln4)=4xx1/e^(ln4)=4xx1/4=1#

Hence #e^(-ln2)+lnsqrt(e^5)+4e^(-2ln2)=1/2+5/2+1=4#