How do you evaluate #\frac{1}{3}+2\log _{8}(3x-2)=\log _{8}(9x^{2}-24x+4)#?

1 Answer
Nov 11, 2017

No real solution.

Explanation:

#1/3+2log_8(3x-2)=log_8(9x^2-24x+4)# can be written as

#1/3log_8 8+2log_8(3x-2)=log_8(9x^2-24x+4)#

or #log_8 8^(1/3)+2log_8(3x-2)=log_8(9x^2-24x+4)#

or #log_8 2+log_8(3x-2)^2=log_8(9x^2-24x+4)#

or #2(3x-2)^2=9x^2-24x+4#

or #2(9x^2-12x+4)=9x^2-24x+4#

or #9x^2+4=0#

As for real values of #x#, #9x^2+4>0#, there is no real solution.