Simplify:
#5/(x-3)-10/(x+3)=7/(x^2-9)#
Simplify #x^2-9^2# using the difference of squares: #a^2-b^2=(a+b)(a-b)#
#x^2-3^2=(x+3)(x-3)#
Rewrite the expression.
#5/(x-3)-10/(x+3)=7/((x+3)(x-3))#
The least common denominator (LCD) for the fractions is #(x+3)(x-3)#. Multiply both sides by the LCD and cancel.
#(x+3)color(red)cancel(color(black)((x-3)))^1xx5/color(red)cancel(color(black)((x-3)))^1-color(red)cancel(color(black)((x+3)))^1(x-3)xx10/color(red)cancel(color(black)((x+3)))^1=color(red)cancel(color(black)((x+3)))^1color(red)cancel(color(black)((x-3)))^1xx7/(color(red)cancel(color(black)((x+3)))^1color(red)cancel(color(black)((x-3)))^1#
Simplify.
#5(x+3)-10(x-3)=7#
Expand.
#5x+15-10x+30=7#
Simplify.
#-5x+45=7#
Subtract #45# from both sides.
#-5x=7-45#
Simplify.
#-5x=-38#
Divide both sides by #-5#.
#x=-(38)/(-5)#
Two negatives make a positive.
#x=38/5