How do you evaluate #\frac { \frac { 1} { 2} - \frac { 2} { 3} } { \frac { 5} { 8} - \frac { 2} { 3} }#?

2 Answers
Feb 28, 2017

#(1/2-2/3)/(5/8-2/3)=4#

Explanation:

First of all let us simplify numerator and denominator separately.

Numerator is #1/2-2/3# and as LCD of denominators is #6#

#1/2-2/3=(1xx3)/(2xx3)-(2xx2)/(3xx2)=3/6-4/6=(3-4)/6=-1/6#

Similarly in denominator #5/8-2/3#, as GCD of denominators is #24#

#5/8-2/3=(5xx3)/(8xx3)-(2xx8)/(3xx8)=15/24-16/24=(15-16)/24=-1/24#

Dividing a fraction by a fraction, whether as in #(a/b)/(c/d)# or #a/b-:c/d#, is equivalent to multiplying by the reciprocal or multiplicative inverse of denominator and hence

#(a/b)/color(red)(c/d)=a/bcolor(red)(xx(d/c))#

#(1/2-2/3)/(5/8-2/3)=(-1/6)/(-1/24)=-1/6xx24/(-1)=1/(cancel6^1)xx(cancel24^4)/1=4#

Mar 1, 2017

#4#

Explanation:

#(1/2-2/3)/(5/8-2/3)#

L.C.D. of 2,3=6
L.C.D. of 8,3=24

#:.=((3-4)/6)/((15-16)/24)#

#:.=((-1)/6)/((-1)/24)#

#:.=-1/cancel6^1 xx -cancel24^4/1#

#:.=4#