How do you evaluate #\frac { \sin ^ { 2} 15^ { \circ } + \sin 75^ { \circ } } { \cos ^ { 2} 36^ { \circ } + \cos ^ { 2} 54^ { \circ } }#?

1 Answer
May 6, 2018

#(sqrt6/4)(sqrt(2 - sqrt3))#

Explanation:

#f(x) = N/D = (sin^2 15 + sin 75)/(cos^2 36 + cos^2 54)#
First, evaluate the denominator D. Since,
#cos (54) = cos (90 - 54) = sin 36#
#cos^2 54 = sin^2 36# --> Therefor:
#D = cos^2 36 + sin^2 36 = 1#
Next, evaluate the numerator N.
Since sin 75 = cos (90 - 75) = cos 15. Therefor,-->
#N = sin 15(sin 15 + cos 15) = sin 15(sqrt2cos (15 - 45))#
#N = sin 15(sqrt2cos (-30)) = (sqrt2)(sqrt3/2)sin 15 =#
#N = (sqrt6/2)sin 15#.
Find sin 15 by using trig identity
#2sin^2 a = 1 - cos 2a#. In this case -->
#2sin^2 15 = 1 - cos 30 = 1 - sqrt3/2 = (2 - sqrt3)/2#
#sin^2 15 = (2 - sqrt3)/4#
#sin 15 = sqrt(2 - sqrt3)/2# (since sin 15 is positive)
Finally
#f(x) = N/D = (sqrt6/4)(sqrt(2 - sqrt3))#