How do you evaluate if possible the 6 trigonometric functions of the real number #t= (-2pi)/3#?

1 Answer
Nov 25, 2015

Find the 6 trig function values of # t = (-2pi)/3#

Explanation:

Unit circle and Trig table of special arcs -->
#sin t = sin ((-2pi)/3) = sin (pi/3 - pi) = - sin pi/3 = - sqrt3/2#
#cos t = cos (pi/3 - pi) = - cos pi/3 = - 1/2#
#tan t = sin t/(cos t) = (-sqrt3/2)(-2/1) = 1/sqrt3 = sqrt3/3.#
#cot t = 3/sqrt3 = sqrt3#
#sec = 1/(cos) = -2#
#csc x = 1/(sin) = -(2sqrt3)/3#