How do you evaluate #\int _ { 0} ^ { 1} \frac { x d x } { \sqrt { x ^ { 2} + 1} }#?
1 Answer
Dec 5, 2016
Explanation:
#I=int_0^1(xdx)/sqrt(x^2+1)#
We will use the substitution
When we substitute, we will also have to change the bounds using
#x=0" "=>" "u=0^2+1=1# #x=1" "=>" "u=1^2+1=2#
So we get:
#I=1/2int_0^1(2xdx)/sqrt(x^2+1)=1/2int_1^2(du)/sqrtu=1/2int_1^2u^(-1/2)du#
Now using
#I=1/2[u^(1/2)/(1/2)]_1^2=[sqrtu]_1^2=sqrt2-1#