How do you evaluate #int arccosx/sqrt(1-x^2)# from #[0, 1/sqrt2]#?
1 Answer
Jan 18, 2017
Explanation:
#I=int_0^(1/sqrt2)arccosx/sqrt(1-x^2)dx#
It's important to know that
Also note that the bounds will change:
#x=1/sqrt2" "=>" "u=arccos(1/sqrt2)=pi/4#
#x=0" "=>" "u=arccos(0)=pi/2#
Then:
#I=-int_0^(1/sqrt2)arccosx((-1)/sqrt(1-x^2)dx)#
#I=-int_(pi/2)^(pi/4)u color(white).du#
#I=int_(pi/4)^(pi/2)ucolor(white).du#
#I=1/2u^2|_(pi//4)^(pi//2)#
#I=1/2((pi/2)^2-(pi/4)^2)#
#I=1/2(pi^2/4-pi^2/16)#
#I=1/2((4pi^2-pi^2)/16)#
#I=(3pi^2)/32#