How do you evaluate #int arccosx/sqrt(1-x^2)# from #[0, 1/sqrt2]#?

1 Answer
Jan 18, 2017

#int_0^(1/sqrt2)arccosx/sqrt(1-x^2)dx=(3pi^2)/32#

Explanation:

#I=int_0^(1/sqrt2)arccosx/sqrt(1-x^2)dx#

It's important to know that #d/dxarccosx=(-1)/sqrt(1-x^2)#. So, if we let #u=arccosx# then #du=(-1)/sqrt(1-x^2)dx#.

Also note that the bounds will change:

#x=1/sqrt2" "=>" "u=arccos(1/sqrt2)=pi/4#

#x=0" "=>" "u=arccos(0)=pi/2#

Then:

#I=-int_0^(1/sqrt2)arccosx((-1)/sqrt(1-x^2)dx)#

#I=-int_(pi/2)^(pi/4)u color(white).du#

#I=int_(pi/4)^(pi/2)ucolor(white).du#

#I=1/2u^2|_(pi//4)^(pi//2)#

#I=1/2((pi/2)^2-(pi/4)^2)#

#I=1/2(pi^2/4-pi^2/16)#

#I=1/2((4pi^2-pi^2)/16)#

#I=(3pi^2)/32#