How do you evaluate #\int \frac { 1} { x \ln x) d x #?
1 Answer
Feb 15, 2018
# int \ 1/(xlnx) \ dx = ln|lnx| + C #
Explanation:
We seek:
# I = int \ 1/(xlnx) \ dx #
We can perform a substitution:
Let
#u=lnx => (du)/dx = 1/x #
If we substitute this into the integral, we get:
# I = int \ 1/u \ du #
Which is a standard integral, so we integrate to get:
# I = ln|u| + C #
And we can restore the substitution, to get:
# I = ln|lnx| + C #