How do you evaluate #int sinx/(1+cos^2x)# from #[pi/2, pi]#?
1 Answer
Jan 9, 2017
Explanation:
#I=int_(pi//2)^pisinx/(1+cos^2x)dx#
We will make the substitution
When making this substitution from
#x=pi/2=>cos(x)=cos(pi/2)=0=tan(theta)=>theta=0# #x=pi=>cos(x)=cos(pi)=-1=tan(theta)=>theta=-pi/4#
So:
#I=-int_(pi//2)^pi(-sinxcolor(white).dx)/(1+cos^2x)=-int_0^(-pi//4)(sec^2thetacolor(white).d theta)/(1+tan^2theta)#
Reversing the order of the bounds with the negative sign and using the identity
#I=int_(-pi//4)^0d theta=[theta]_(-pi//4)^0=0-(-pi/4)=pi/4#