How do you evaluate #int x/sqrt(1+x^2)# from #[-sqrt2,0]#? Calculus Techniques of Integration Integration by Trigonometric Substitution 1 Answer sjc Mar 26, 2018 #1-sqrt3# Explanation: #int_-sqrt2^0x/sqrt(1+x^2)dx# #int_-sqrt2^0x(1+x^2)^(-1/2)dx# by inspection #=[(1+x^2)^(1/2)]_-sqrt2^0# #=[(1+x^2)^(1/2)]^0-[(1+x^2)^(1/2)]_-sqrt2# #=1-(1+2)^(1/2)# #=1-sqrt3# Answer link Related questions How do you find the integral #int1/(x^2*sqrt(x^2-9))dx# ? How do you find the integral #intx^3/(sqrt(x^2+9))dx# ? How do you find the integral #intx^3*sqrt(9-x^2)dx# ? How do you find the integral #intx^3/(sqrt(16-x^2))dx# ? How do you find the integral #intsqrt(x^2-1)/xdx# ? How do you find the integral #intsqrt(x^2-9)/x^3dx# ? How do you find the integral #intx/(sqrt(x^2+x+1))dx# ? How do you find the integral #intdt/(sqrt(t^2-6t+13))# ? How do you find the integral #intx*sqrt(1-x^4)dx# ? How do you prove the integral formula #intdx/(sqrt(x^2+a^2)) = ln(x+sqrt(x^2+a^2))+ C# ? See all questions in Integration by Trigonometric Substitution Impact of this question 1351 views around the world You can reuse this answer Creative Commons License