How do you evaluate sec (11pi)/3? Trigonometry Right Triangles Trigonometric Functions of Any Angle 1 Answer Nghi N. May 7, 2015 #sec (11pi/3) = 1/cos ((11pi)/3)# Trig unit circle gives: #cos ((11pi)/3) = cos ((5pi)/3 + 2pi) = cos (pi/3)# Trig table gives #cos (pi/3) = 1/2# Then, #sec [(11pi)/3] = 2.# Answer link Related questions How do you find the trigonometric functions of any angle? What is the reference angle? How do you use the ordered pairs on a unit circle to evaluate a trigonometric function of any angle? What is the reference angle for #140^\circ#? How do you find the value of #cot 300^@#? What is the value of #sin -45^@#? How do you find the trigonometric functions of values that are greater than #360^@#? How do you use the reference angles to find #sin210cos330-tan 135#? How do you know if #sin 30 = sin 150#? How do you show that #(costheta)(sectheta) = 1# if #theta=pi/4#? See all questions in Trigonometric Functions of Any Angle Impact of this question 17249 views around the world You can reuse this answer Creative Commons License