How do you evaluate #Sin ((13pi)/12)#?

1 Answer
Mar 24, 2016

#- sqrt(2 - sqrt3)/2#

Explanation:

#sin (13pi)/12 = sin (pi/12 + pi) = - sin (pi/12).#
Evaluate sin (pi/12) by the trig identity:
#cos 2a = 1 - 2sin^2 a#
Call #pi/12) = t#, we get #cos (2t) = cos (pi/6) = sqrt3/2#
The equation becomes:
#sqrt3/2 = 1 - 2 sin^2 t#
#2sin^2 t = 1 - sqrt3/2 = (2 - sqrt3)/2#
#sin^2 t = (2 - sqrt3)/4#
#sin t = sin (pi/12) = +- sqrt(2 - sqrt3)/2#
Because #sin (pi/12)# is positive, therefor,
#sin ((13pi)/12) = - sin (pi/12)# is negative.
Answer: #sin ((13pi)/12) = - (sqrt(2 - sqrt3))/2#