How do you evaluate #Sin ((-13pi)/4)#?

2 Answers
Jul 31, 2016

#1/sqrt2#.

Explanation:

First, we use #sin(-theta)=-sintheta#, so,

#sin(-13pi/4)=-sin(13pi/4)=-sin(3pi+pi/4)#.

This shows that, #13pi/4=3pi+pi/4# lies in the Third Quadrant in

which, #sin# is #-ve.#

Finally, #sin(3pi+pi/4)=-sin(pi/4)=-1/sqrt2#.

Hence, #sin(-13pi/4)-(-1/sqrt2)=1/sqrt2#.

Jul 31, 2016

#sqrt2/2#

Explanation:

Trig table of special arcs, unit circle, and property of supplementary arcs -->
#sin ((-13pi)/4) = sin (-pi/4 - (12pi)/4) = sin (-pi/4 - 3pi) = #
#= sin (-pi/4 - pi) = - sin (pi/4 + pi) = - (- sin pi/4) =#
#= sin (pi/4) = sqrt2/2#