How do you evaluate #Sin (165)#?
1 Answer
Explanation:
Some things we will use:
#sin(theta) = sin (180^@ - theta)#
#sin(alpha-beta) = sin alpha cos beta - sin beta cos alpha#
#sin 45^@ = cos 45^@ = sqrt(2)/2#
#sin 30^@ = 1/2#
#cos 30^@ = sqrt(3)/2#
Hence we find:
#sin 165^@ = sin (180^@-165^@)#
#color(white)(sin 165^@) = sin 15^@#
#color(white)(sin 165^@) = sin (45^@ - 30^@)#
#color(white)(sin 165^@) = sin 45^@ cos 30^@ - sin 30^@ cos 45^@#
#color(white)(sin 165^@) = sqrt(2)/2 sqrt(3)/2 - 1/2 sqrt(2)/2#
#color(white)(sin 165^@) = 1/4(sqrt(6)-sqrt(2))#
Footnotes
The trigonometric values we used in our derivation can be observed in the following right angled triangles:
Hence
Hence