How do you evaluate #Sin (165)#?

1 Answer
Sep 29, 2016

#sin 165^@ = 1/4(sqrt(6)-sqrt(2))#

Explanation:

Some things we will use:

#sin(theta) = sin (180^@ - theta)#

#sin(alpha-beta) = sin alpha cos beta - sin beta cos alpha#

#sin 45^@ = cos 45^@ = sqrt(2)/2#

#sin 30^@ = 1/2#

#cos 30^@ = sqrt(3)/2#

Hence we find:

#sin 165^@ = sin (180^@-165^@)#

#color(white)(sin 165^@) = sin 15^@#

#color(white)(sin 165^@) = sin (45^@ - 30^@)#

#color(white)(sin 165^@) = sin 45^@ cos 30^@ - sin 30^@ cos 45^@#

#color(white)(sin 165^@) = sqrt(2)/2 sqrt(3)/2 - 1/2 sqrt(2)/2#

#color(white)(sin 165^@) = 1/4(sqrt(6)-sqrt(2))#

#color(white)()#
Footnotes

The trigonometric values we used in our derivation can be observed in the following right angled triangles:

enter image source here

Hence #sin 45^@ = cos 45^@ = 1/sqrt(2) = sqrt(2)/2#

enter image source here

Hence #sin 30^@ = 1/2# and #cos 30^@ = sqrt(3)/2#