How do you evaluate #sin(((−5pi)/12))#?

1 Answer
Apr 5, 2016

# - (sqrt(2 + sqrt3)/2)#

Explanation:

Trig unit circle and property of complementary arcs -->
#sin ((-5pi)/12) = sin (pi/12 - (6pi)/12)) = sin (pi/12 - pi/2) = #
#= - cos (pi/12)#
Evaluate cos (pi/12) by applying the trig identity:
#cos 2a = 2cos^2 a - 1.#
#cos (pi/6) = sqrt3/2 = 2cos^2 (pi/12) - 1#
#2cos^2 (pi/12) = 1 + sqrt3/2 = (2 + sqrt3)/2#
#cos^2 (pi/12) = (2 + sqrt3)/4#
#cos (pi/12) = (sqrt(2 + sqrt3))/2# --> since #cos (pi/12)# is positive.
Therefor,
#sin ((-5pi)/12) = - cos (pi/12) = - (sqrt(2 + sqrt3)/2)#