How do you evaluate #\sin ( \frac { 3\pi } { 8} ) + \sin ( \frac { 3\pi } { 8} )#?
2 Answers
Explanation:
#sin((3pi)/8)+sin((3pi)/8)=2sin((3pi)/8)#
#"using the "color(blue)"half angle formula for sin"#
#•color(white)(x)sin(theta/2)=+-sqrt((1-costheta)/2)#
#"here " theta/2=(3pi)/8rArrtheta=(6pi)/8=(3pi)/4#
#•color(white)(x)cos((3pi)/4)=-cos(pi/4)#
#sin((3pi)/8)=+-sqrt((1-cos((3pi)/4))/2)# We only require the positive root since
#(3pi)/8# is in the first quadrant.
#=sqrt((1+cos(pi/4))/2)=sqrt((1+1/sqrt2)/2#
#=sqrt((sqrt2+1)/(2sqrt2))=sqrt((2+sqrt2)/4)=(sqrt(2+sqrt2))/2#
#rArr2sin((3pi)/8)=cancel(2)xxsqrt(2+sqrt2)/cancel(2)=sqrt(2+sqrt2)#
Explanation:
Find sin ((3pi)/8) by using trig identity:
In this case -->
Since
Finally,