How do you evaluate #sin{pi/7} sin{(2pi)/7} sin{(3pi)/7}#?

1 Answer
Write your answer here...
Start with a one sentence answer
Then teach the underlying concepts
Don't copy without citing sources
preview
?

Answer

Write a one sentence answer...

Answer:

Explanation

Explain in detail...

Explanation:

I want someone to double check my answer

Describe your changes (optional) 200

20

This answer has been featured!

Featured answers represent the very best answers the Socratic community can create.

Learn more about featured answers

Nov 17, 2016

Let #x=sin(pi/7)sin((2pi)/7)sin((3pi)/7)#
and

#y=cos(pi/7)cos((2pi)/7)cos((3pi)/7)#

So

#8xy=2sin(pi/7)cos(pi/7) xx2sin((2pi)/7)cos((2pi)/7)xx2sin((3pi)/7)cos((3pi)/7)#

#=sin((2pi)/7)sin((4pi)/7)sin((6pi)/7)#

#=sin((2pi)/7)sin(pi-(3pi)/7)sin(pi-pi/7)#

#=sin((2pi)/7)sin((3pi)/7)sin(pi/7)=x#

Hence #y=1/8#

Now let

#cos(pi/7)=a,cos((2pi)/7)=b,cos((3pi)/7)=c#

So

#y=cos(pi/7)cos((2pi)/7)cos((3pi)/7)=abc=1/8#

Again

#8x^2=8sin^2(pi/7)sin^2((2pi)/7)sin^2((3pi)/7)#

#=[1-cos((2pi)/7)][1-cos((4pi)/7)][1-cos((6pi)/7)]#

#=[1-cos((2pi)/7)][1+cos((3pi)/7)][1+cos(pi/7)]#

#=(1-b)(1+c)(1+a)#

#=(1-b)(1+c)(1+a)#

#=1+a-b+c+ac-ab-bc-abc#

#=1+a-b+c+ac-ab-bc-1/8#

#=>8x^2=7/8+a-b+c+ac-ab-bc#

Now

#ac-ab-bc=1/2(2ac-2ab-2bc)#

#=1/2[2cos(pi/7)cos((3pi)/7) -2cos(pi/7)cos((2pi)/7)-2cos((2pi)/7)cos((3pi)/7)]#

#=1/2[cos((4pi)/7)+cos((2pi)/7) -cos((3pi)/7)-cos(pi/7)-cos((5pi)/7)-cos(pi/7)]#

#=1/2[-cos((3pi)/7)+cos((2pi)/7) -cos((3pi)/7)+cos((2pi)/7)-2cos(pi/7)]#

#=1/2[2cos((2pi)/7) -2cos((3pi)/7)-2cos(pi/7)]#

#=b-a-c#

#=>ac-ab-bc+a-b+c=0#

Hence we get

#=>8x^2=7/8+a-b+c+ac-ab-bc#

#=>8x^2=7/8+0#

#=>x^2=7/64#

#=>x=sqrt7/8#

#=>sin(pi/7)sin((2pi)/7)sin((3pi)/7)=sqrt7/8#

Was this helpful? Let the contributor know!
1500