How do you evaluate sqrt(64 + x^2)/x?

Evaluate the integral. (Remember to use absolute values where appropriate. Use C for the constant of integration.)

#int# #sqrt(64 + x^2)/x# dx

1 Answer
Jan 18, 2018

#I = sqrt(x^2 +64) - 8ln|sqrt(x^2 + 64)/x + 8/x| + C#

Explanation:

Use the trig substitution #x = 8tantheta#. This means that #dx = 8sec^2theta d theta#

#I = int sqrt(64 + (8tantheta)^2)/(8tantheta) * 8sec^2theta d theta#

#I = int sqrt(64 + 64tan^2theta)/(8tantheta) * 8sec^2theta d theta#

#I = int sqrt(64(1 + tan^2theta))/(8tantheta) * 8sec^2theta d theta#

#I = int sqrt(64sec^2theta)/tantheta sec^2theta d theta#

#I = int (8sec^3theta)/tantheta d theta#

#I = int 8sec^3theta cot theta d theta#

#I = 8 int 1/costheta(sec^2theta)costheta/sintheta d theta#

#I = 8 int sec^2theta/sintheta d theta#

#I = 8int sec^2theta csctheta d theta#

#I = 8 int (1 + tan^2theta)csctheta d theta#

#I = 8int csctheta + sin^2theta/cos^2theta(1/sintheta) d theta#

#I = 8 int cscthetad theta + 8int sintheta/cos^2theta d theta#

#I = 8int csctheta d theta + 8 inttanthetasectheta d theta#

These are two known integrals. We know that #int cscx dx = -ln(cscx + cotx)# and #int secxtanxdx = secx#. Thus:

#I = 8sectheta - 8ln|csctheta + cottheta| + C#

From our initial substitution, we know that #tantheta = x/8#. Therefore, if we were to draw a right triangle we would find the hypotenuse to be #sqrt(x^2 + 8^2) = sqrt(x^2 + 64)#. Thus, #sectheta = sqrt(x^2 + 64)/8#, #csctheta = sqrt(x^2+ 64)/x# and #cottheta = 8/x#.

#I = 8sqrt(x^2 + 64)/8 - 8ln|sqrt(x^2+ 64)/x + 8/x| + C#

#I = sqrt(x^2 +64) - 8ln|sqrt(x^2 + 64)/x + 8/x| + C#

Hopefully this helps!