How do you evaluate #\sum _ { n = 1} ^ { \infty } \frac { ( - 3) ^ { n - 1} } { 7^ { n } }#?

2 Answers
Feb 1, 2017

# sum_(n=1)^(oo) (-3)^(n-1)/7^n = 1/10 #

Explanation:

We want to evaluate the series summation:

# sum_(n=1)^(oo) (-3)^(n-1)/7^n #

Let us denote the #n^(th)# term in the series by #u_n#, then:

# u_n = (-3)^(n-1)/7^n #
# \ \ \ \ = (-3)/(-3)(-3)^(n-1)/7^n #
# \ \ \ \ = 1/(-3)(-3)^n/7^n #
# \ \ \ \ = -1/3(-3/7)^n #

So the first few sequence terms of the above series (starting #n=1#) are:

# -1/3(-3/7), -1/3(-3/7)^2, -1/3(-3/7)^3, -1/3(-3/7)^4, ...#

or:

# 1/7, 1/7(-3/7), 1/7(-3/7)^2, 1/7(-3/7)^3...#

These terms form an Geometric Progression (GP) with:

#a=1/7# and #r=-3/7#

and using the standard GP formula #S_oo = a/(1-r)# we can calculate the summation;

# sum_(n=1)^(oo) (-3)^(n-1)/7^n = (1/7)/(1-(-3/7)) #
# " " = (1/7)/(10/7)#
# " " = 1/10 #

Feb 1, 2017

#sum_(n=1)^oo (-3)^(n-1)/7^n = 1/10#

Explanation:

#sum_(n=1)^oo (-3)^(n-1)/7^n = sum_(n=1)^oo 1/7(-3)^(n-1)/7^(n-1) = 1/7sum_(n=1)^oo (-3/7)^(n-1)#

If you change the summation index with #m=n-1#, then we have:

#sum_(n=1)^oo (-3)^(n-1)/7^n = 1/7 sum_(m=0)^oo (-3/7)^m#

this is the sum of a geometric progression, and we know that for #abs(x) < 1#:

#sum_(m=0)^oo x^m = 1/(1-x)#

so:

#1/7sum_(m=0)^oo (-3/7)^m = 1/7(1/(1+3/7))= (1/(7+3))=1/10#