How do you evaluate #\sum _ { n = 1} ^ { \infty } \frac { ( - 3) ^ { n - 1} } { 7^ { n } }#?
2 Answers
# sum_(n=1)^(oo) (-3)^(n-1)/7^n = 1/10 #
Explanation:
We want to evaluate the series summation:
# sum_(n=1)^(oo) (-3)^(n-1)/7^n #
Let us denote the
# u_n = (-3)^(n-1)/7^n #
# \ \ \ \ = (-3)/(-3)(-3)^(n-1)/7^n #
# \ \ \ \ = 1/(-3)(-3)^n/7^n #
# \ \ \ \ = -1/3(-3/7)^n #
So the first few sequence terms of the above series (starting
# -1/3(-3/7), -1/3(-3/7)^2, -1/3(-3/7)^3, -1/3(-3/7)^4, ...#
or:
# 1/7, 1/7(-3/7), 1/7(-3/7)^2, 1/7(-3/7)^3...#
These terms form an Geometric Progression (GP) with:
#a=1/7# and#r=-3/7#
and using the standard GP formula
# sum_(n=1)^(oo) (-3)^(n-1)/7^n = (1/7)/(1-(-3/7)) #
# " " = (1/7)/(10/7)#
# " " = 1/10 #
Explanation:
If you change the summation index with
this is the sum of a geometric progression, and we know that for
so: