#tan(11pi/12)=tan(pi-pi/12)=-tan(pi/12)=-tantheta#, say where, #theta=pi/12#, so that #2theta=pi/6.#
Now recall the identity #: tan2theta=(2tantheta)/(1-tan^2theta)#
#:. tan(pi/6)=(2t)/(1-t^2)#, where, #t=tantheta=tan(pi/12)#
#:. 1/sqrt3=(2t)/(1-t^2) rArr1-t^2=2sqrt3*trArrt^2+2sqrt3*t=1rArrt^2+2sqrt3*t+(sqrt3)^2=1+(sqrt3)^2#
#:. (t+sqrt3)^2=2^2#
#:.t+sqrt3=+-2#
#:.t=+-2-sqrt3#
#t=-2-sqrt3 rArr tan(pi/12)# is #-ve#, which is not possible, as #pi/12# lies in the First Quadrant [all trigo. ratio #+ve#]
Hence, #t=tan(pi/12)=+2-sqrt3#, so, #tan(11pi/12)=-tan(pi/12)=sqrt3-2~=1.7321-2=-0.2679#