How do you evaluate #tan ((7pi)/12)#?

1 Answer
Mar 17, 2016

#- sqrt(2 + sqrt3)/(sqrt2 - sqrt3)#

Explanation:

On the trig unit circle,
#tan ((7pi)/12) = tan (pi/12 + (6pi)/12) = tan (pi/12 + pi/2) = -cot (pi/12)#.
Find #cot (pi/12) = cos (pi/12)/sin (pi/12)#
Apply the trig identity: #cos 2a = 2cos^2 a - 1 = 1 - 2sin^2 a.#
#cos (pi/6) = sqrt3/2 = 2cos^2 (pi/12) - 1.#
#cos^2 (pi/12) = 1 + sqrt3/2 = (2 + sqrt3)/4#
#cos (pi/12) = sqrt(2 + sqrt3)/2 # --> (since (pi/12) is in Quadrant I)
By the same way:
#sin (pi/12) = sqrt(2 - sqrt3)/2#
Finally:
#tan ((7pi)/12) = - cos/(sin) = - sqrt(2 + sqrt3)/(sqrt(2 - sqrt3))#