How do you evaluate the definite integral #int sin^2xcosx# from #[pi/4, pi/2]#?

1 Answer
Sep 18, 2016

#(4-sqrt2)/12#

Explanation:

#int_(pi/4)^(pi/2)sin^2xcosxdx#

We will use the substitution #u=sinx#. Note that this implies that #u=cosxdx#, both of which we have already in our integral.

Before substituting, recall to plug the current bounds into the function of #u#. The bound of #pi/4# becomes #sin(pi/4)=sqrt2/2#. The bound of #pi/2# becomes #sin(pi/2)=1#. Thus:

#=int_(sqrt2/2)^1u^2du#

Using the rule where #intu^ndu=u^(n+1)/(n+1)+C#, where #n!=-1#:

#=[u^3/3]_(sqrt2/2)^1=1/3(1^3-(sqrt2/2)^3)=1/3(1-(sqrt2)/4)=(4-sqrt2)/12#