How do you evaluate the definite integral #int (x^2+4x+4)dx# from [0,2]?
1 Answer
Dec 6, 2016
Explanation:
Start by integrating using the rule
#int_0^2(x^2 + 4x + 4)dx = 1/3x^3 + 2x^2 + 4x|_0^2#
We now use the rule that
#=>1/3(2)^3 + 2(2)^2 + 4(2) - (2/3(0)^3 + 2(0)^2 + 4(0))#
#=>1/3(8) + 8 + 8 - 0#
#=>56/3#
Hopefully this helps!