How do you evaluate the definite integral #int (x^2+4x+4)dx# from [0,2]?

1 Answer
Dec 6, 2016

#56/3#.

Explanation:

Start by integrating using the rule #int(x^n)dx= x^(n + 1)/(n + 1) + C#.

#int_0^2(x^2 + 4x + 4)dx = 1/3x^3 + 2x^2 + 4x|_0^2#

We now use the rule that #int_a^b f(x) dx = F(b) - F(a)#, where #F(x)# is the antiderivative of #f(x)#.

#=>1/3(2)^3 + 2(2)^2 + 4(2) - (2/3(0)^3 + 2(0)^2 + 4(0))#

#=>1/3(8) + 8 + 8 - 0#

#=>56/3#

Hopefully this helps!