How do you evaluate the definite integral #int (xsqrtx)dx# from [4,9]?
2 Answers
Nov 18, 2016
The answer is
Explanation:
To evaluate this integral, we use
Nov 18, 2016
Explanation:
Express
#xsqrtx=x xxx^(1/2)=x^(3/2)#
#rArrint_4^9x^(3/2)dx# integrate using the
#color(blue)"power rule for integration"#
#color(orange)"Reminder " color(red)(bar(ul(|color(white)(2/2)color(black)(intax^ndx=a/(n+1)x^(n+1))color(white)(2/2)|)))#
#rArrint_4^9x^(3/2)dx=[1/(5/2)x^(5/2)]_4^9=[2/5x^(5/2)]_4^9#
#=2/5(9^(5/2)-4^(5/2))#
#=2/5(243-32)=422/5#