How do you evaluate the definite integral #int (xsqrtx)dx# from [4,9]?

2 Answers
Nov 18, 2016

The answer is #=422/5#

Explanation:

To evaluate this integral, we use

#intx^ndx=x^(n+1)/(n+1)+C#

#xsqrtx=x*x^(1/2)=x^(3/2)#

#int_4^9(xsqrtx)dx=int_4^9x^(3/2)dx= [x^(5/2)/(5/2) ]_4^9 #

#= [ 2/5x^(5/2) ]_4^9 #

#=2/5(3^5-2^5)#

#=(486-64)/5#

#=422/5#

#422/5#

Explanation:

Express #xsqrtx=x xxx^(1/2)=x^(3/2)#

#rArrint_4^9x^(3/2)dx#

integrate using the #color(blue)"power rule for integration"#

#color(orange)"Reminder " color(red)(bar(ul(|color(white)(2/2)color(black)(intax^ndx=a/(n+1)x^(n+1))color(white)(2/2)|)))#

#rArrint_4^9x^(3/2)dx=[1/(5/2)x^(5/2)]_4^9=[2/5x^(5/2)]_4^9#

#=2/5(9^(5/2)-4^(5/2))#

#=2/5(243-32)=422/5#