We have to evaluate #sin(u-v)= ?#
Given that, #color(blue)(sinu=3/5 ,)with, pi/2 < u < color(red)( pi),where,pto#pi
#color(blue)(cosv=-5/6,)with, pi < v < (3pi)/2#
Now,
#cosu=-sqrt(1-sin^2u),# where #pi/2< u < pi toII^(nd) Quadrant#
#cosu=-sqrt(1-9/25)=-sqrt(16/25)#
#=>color(blue)(cosu=-4/5#
Also,
#sinv=-sqrt(1-cos^2v)#,where,#pi< v < (3pi)/2to
III^(rd)Quadrant#
#sinv=-sqrt(1-25/36)=-sqrt(11/36)#
#color(blue)(sinv=-sqrt11/6#
So,
#sin(u-v)=sinucosv-cosusinv#
#=>sin(u-v)=(3/5)(-5/6)-(-4/5)(-sqrt11/6)#
#=>sin(u-v)=-15/30-(4sqrt11)/30#
#=>sin(u-v)=-(15+4sqrt11)/30#