How do you evaluate the indefinite integral #intsin^3(x)*cos^2(x)dx# ?

1 Answer
Sep 19, 2014

#=-(cos^3x)/3+(cos^5x)/5+c#, where #c# is a constant

Explanation :

#=intsin^3(x)*cos^2(x)dx#

#=intsin^2(x)*sin(x)*cos^2(x)dx#

from trigonometric identity #sin^2(x)+cos^2(x)=1#, we get #sin^2(x)=1-cos^2(x)#

#=intsin(x)*(1-cos^2(x))*cos^2(x)dx#

Integration by Substitution

let's #cos(x)=t#, #=>-sin(x)dx=dt#

#=int(1-t^2)*t^2(-dt)#

#=-int(1-t^2)*t^2dt#

#=-int(t^2-t^4)dt#

#=-intt^2dt+intt^4dt#

#=-t^3/3+t^5/5+c#, where #c# is a constant

substituting #t# back, yields

#=-(cos^3x)/3+(cos^5x)/5+c#, where #c# is a constant