How do you evaluate the indefinite integral #intsin^3(x)*cos^2(x)dx# ?
1 Answer
Sep 19, 2014
#=-(cos^3x)/3+(cos^5x)/5+c# , where#c# is a constantExplanation :
#=intsin^3(x)*cos^2(x)dx#
#=intsin^2(x)*sin(x)*cos^2(x)dx# from trigonometric identity
#sin^2(x)+cos^2(x)=1# , we get#sin^2(x)=1-cos^2(x)#
#=intsin(x)*(1-cos^2(x))*cos^2(x)dx# let's
#cos(x)=t# ,#=>-sin(x)dx=dt#
#=int(1-t^2)*t^2(-dt)#
#=-int(1-t^2)*t^2dt#
#=-int(t^2-t^4)dt#
#=-intt^2dt+intt^4dt#
#=-t^3/3+t^5/5+c# , where#c# is a constantsubstituting
#t# back, yields
#=-(cos^3x)/3+(cos^5x)/5+c# , where#c# is a constant