How do you evaluate the integral from -1 to 1 of #int x^2/sqrt(x^3 +9) dx#?
1 Answer
Mar 10, 2018
The integral equals approximately
Explanation:
We have:
#I = int_-1^1 x^2/sqrt(x^3 + 9)dx#
Letting
#I = int_8^10 x^2/sqrt(u) * (du)/(3x^2)#
#I = 1/3int_8^10 1/(u^(1/2))#
#I = 1/3int_8^10 u^(-1/2)#
#I = 1/3[2u^(1/2)]_8^10#
#I = 2/3sqrt(10) - 2/3sqrt(8)#
#I = 2/3(sqrt(10) - 2sqrt(2))#
#I ~~ 0.223#
Hopefully this helps!