How do you evaluate the integral #int (5x+1)/((2x+1)(x-1))dx#?

1 Answer
Nov 28, 2016

You separate the integrand as a sum of first order rational functions using the development in partial fractions

Explanation:

Pose:

#(5x+1)/((2x+1)(x-1)) = A/(2x+1) + B/(x-1)#

Developing the second part:

#A/(2x+1) + B/(x-1) = (A(x-1) + B(2x+1))/((2x+1)(x-1)) = (Ax-A+2Bx+B)/((2x+1)(x-1)) = ((A+2B)x - (A-B))/((2x+1)(x-1))#

Equate the coefficient of the same order of the numerators and get:

#A+2B =5#
#A-B=-1#

Solving this system you get:

#A=1, B=2#

so:

#int(5x+1)/((2x+1)(x-1))dx = int(1/(2x+1)+2/(x-1))dx =#
# = int dx/(2x+1)+2 int dx/(x-1) = 1/2log(2x+1)+2log(x-1) = log((x-1)^2sqrt(2x+1))#